INTERFERENCE ON WEDGE SHAPE FILM

- Introduction.
- Path Difference.
- Condition for maxima and minima.

Consider two plane glass surfaces **GH** and G_1H_1 , both are inclined at angle at an angle (α) , so that air film of increasing thickness is formed between both of two surfaces. Let (μ) be the refractive index of the material film. Interference in wedge shape film can be studied only when this film is illuminated by source of monochromatic light. Suppose a beam of monochromatic light AB incident at an angle (i) at a point (B) on the upper surface G_1H_1 . Then a part of this light will be reflected in the direction **BR** and a part of this light be refracted in a direction **BC**, this refracted ray will be incident at an angle $(\mathbf{r} + \boldsymbol{\alpha})$ at a point (C). Then a part of this refracted will be reflected at the denser surface in the direction **CD** and comes out in the form of ray **DR**₁. Our aim is to be study interference between two reflected ray **BR** and **DR**₁. From the fig. it is observed that ray **BR** and DR_1 are not parallel so that they appear to diverge from a point (S) means interference take place at S which is virtual. So that intensity at a point **S** is maximum or minimum depend upon the path difference between the two reflected ray **BR** and **DR**₁ that is

$$(BC + CD)\mu - BF(\mu = 1) - - - - - - (1)$$
 First of all find out value of **BF**,
We know $\mu = \frac{\sin i}{\sin r}$, calculate value of $\sin i$ and $\sin r$
Take right angle triangle DFB $\sin i = \frac{BF}{BD}$
Similarly find out value of $\sin r$ taking Right angle
triangle DEB (by draw perpendicular from the point
from the point D on the ray BC) $\sin r = \frac{BE}{BD}$
Putting value of we get value of μ
 $\mu = \frac{\sin i}{\sin r} = \frac{BF}{BD} = \frac{BF}{BD} \times \frac{BD}{BE} = \frac{BF}{BE}$ or $BF = \mu BE$ Putting value of **BF** in equation (1) we get
 $(BC + CD)\mu - \mu BE = \mu (BC + CD - BE) - - - - - (2)$
From the fig (1.2) value of **BC** can be
written as $BC = BE + EC$ putting
value BC in equation (2) we get
 $\mu (BC + CD - BE) = \mu (BE + EC + CD - BE) = \mu (EC + CD) - - - - (3)$

First of all find out angle of incidence of refracted ray at a point **C** on the surface **GH** by taking the right angle triangle **OMC** In fig (1.2.) that $\angle MCD = \bigotimes 0^0 \angle MOC$ then $\angle OMC = 90^{\circ} - C$, consider the triangle **BQM** in that $\angle B = 90^{\circ} \& \angle M = 90^{\circ} - \alpha \ then \angle Q = 180^{\circ} - (90^{\circ} + 90^{\circ} - \alpha) = \alpha$ Consider the triangle **DNC** in that Consider the triangle BQC in that $\angle N = 90^{\circ} \& \angle C = 90^{\circ} - r + \alpha \text{ then } \angle D = r + \alpha$ $\angle B = 90^{\circ} \& \angle Q = \alpha \text{ then } \angle C = r + \alpha$ Consider the triangle **DNC** in that Consider the triangle **DPC** in that $\angle C = 180^{\circ} - 2(r + \alpha) \& \angle D = r + \alpha \text{ then } \angle P = r + \alpha$ Consider the triangle **DNC** and **PNC** in both of them $\angle D = \angle P$, $\angle N = \angle N$ and When two angle and one side is common then NC = common base in both themsuch type of triangle (AAS) is congruent triangle thus in these triangle DN = NP & CD = CP and NC = commonThus value of can be written in equation (3°) we get Value of EP can be finding $\cos(r+\alpha) = \frac{PE}{PD} = \frac{PE}{2t}$ out by taking right angle triangle **DEP** Putting value of EP in equation (4) we get Pathdifference between two reflected rays will be r+α $2\mu t \cos(r+\alpha) = ----(5)$ 90°

6

But according to principle of reversibility when wave reflected from the surface of optically denser medium then it suffer a phase change of π if phase change π occurs then path-difference $\frac{\lambda}{2}$ introduce in it. Thus total path-difference between two

So intensity ay a point S will be maximum only when path difference between the two reflected rays will be equal to $n\lambda$. Thus

 $2\mu t \cos(r+\alpha) + \frac{\lambda}{2} = n\lambda$ where n = 1, 2, 3, 4, 5 - - - - -

So intensity ay a point S will be mini-mum only when path difference between the two reflected rays will be equal to $(2n + 1) \frac{\lambda}{2}$ Thus

$$2\mu t\cos(r+\alpha) + \frac{\lambda}{2} = (2n+1)\frac{\lambda}{2}$$
 where $n = 1,2,3,4,5 - - - - -$